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Abstract 

This report describes an investigation into the mixed-mode fracture behavior of solid propellants. 
Experiments were performed at different mixed mode loading conditions at different tempera- 
tures and strain rates. The collection of data suggested that while the maximum tangential stress 
criterion was a reasonable indicator of the onset of crack initiation, the crack growth direction 
was not well predicted, primarily due to the development of damage near the crack tip. In an ef- 
fort to overcome this limitation, a cohesive zone damage model was introduced to represent the 
crack. This model was then embedded in a boundary element method so that arbitrary crack 
growth under mixed mode loading can be simulated. The details of both the cohesive zone repre- 
sentation and the boundary element implementation are provided. Comparison of the predictions 
from the stress intensity factor based fracture criterion and cohesive zone model based simula- 
tion is presented. 
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1.   Introduction 

The mixed-mode problem considered here involves determination of the critical conditions at 
which a crack subjected to a combination of loading modes I and II will initiate. Another impor- 
tant consideration is the crack trajectory upon initiation. Since the early work of Erdogan and Sih 
(1962), this problem has received considerable attention (for example, Williams and Ewing, 
(1972); Maiti and Smith (1983), Ueda et al, (1983)) and a number of criteria have been pro- 
posed to predict crack initiation behavior under mixed-mode loading. In the two-dimensional 
case, the Cartesian components of the crack tip stresses can be expressed (in terms of the polar 
coordinates as) 

°ap(r,0) = ^=faß{e) + ^I=gaß{9).r-*o,a,ß = \,2, 
V27zr -J2m- (1) 

where faß{9) and gaß{9) are characteristic functions and Kj and Kjj are the mode I and mode 
II stress intensity factors respectively. The asymmetry of the loading is generally described in 
terms of the mixity parameter ju which is defined as 

(2) 

Thus the mixed-mode fracture problem involves determining critical stress intensity factor pairs 
[KJ,KJJ ) f°r different values of//, at which the crack will initiate. Furthermore it is required to 

determine the initiation angle y as a function of ju, as well as the subsequent crack propagation 
path. Many different criteria have been proposed to predict the critical condition for crack initia- 
tion and the crack trajectory upon initiation; the maximum tangential stress criterion (MTS) de- 
scribed is probably the most widely used. This criterion was proposed by Erdogan and Sih 
(1962) and is stated as follows: Crack extension starts at the crack tip in a radial direction. This 
extension is in that radial direction perpendicular to the direction of the greatest tension. Crack 
extension begins when this tension reaches a certain critical value at a certain distance from the 
crack tip. Erdogan and Sih (1962) used a plate containing a central crack of length 2a subjected 
to uniaxial far-field loading a, the crack being oriented at angle /?to the loading direction. They 
obtained a relation for the initiation angle y as a function of ju by equating the partial derivative 
daee I dO to zero (equivalently the shear stress cr^can be equated to zero). Both these condi- 
tions yield the relation 

sin^ + (3cosx-l)/« = 0. (3) 

From Eq.(3) it can be shown that for pure mode II conditions (ju = 0) the initiation angle is pre- 
dicted to be 70.5°. 

In the present work, this problem of mixed-mode fracture has been examined for the solid 
propellant materials which are particulate composites. In characterizing the fracture of solid pro- 
pellants, theories of linear elastic fracture mechanics (LEFM) and linear and nonlinear vis- 



coelastic fracture mechanics (VEFM) are usually applied. The fundamental constitutive assump- 
tions of these theories dictate that the theories will have a certain range of validity depending on 
the nature of the loading, time scale of application etc. For example, if the loads are applied rap- 
idly, it might be appropriate to use LEFM; on the other hand, under conditions of storage, over 
long periods of time, viscoelastic deformation dominates and the appropriate theory to use in 
determining the reliability of the solid propellant would be the VEFM. While these theories are 
firmly grounded in the classical principles of mechanics, experimental results obtained on solid 
propellant materials do not appear to correlate well with the predictions of the theory (Francis et 
ah, 1980). The reasons for this disagreement could arise potentially from errors in experimental 
measurements and in the theoretical interpretation. The measurements typically obtained in the 
experiments are of the loads and displacements at the boundaries of the specimen. These are then 
interpreted in terms of the crack tip parameters using LEFM or VEFM assuming, of course, that 
either of these theories is appropriate. However, there are a number of problems in such an inter- 
pretation. Near the crack tip, in a small zone surrounding the crack tip, there exists a zone of 
large deformations and damage, which cannot be modeled as an elastic or viscoelastic medium. 

We report here, the results of an investigation into mixed-mode fracture. In Section 2, the 
experimental methodology and results on the experimental characterization of mixed-mode 
fracture are presented. The problems associated with the prediction of mixed mode fracture are 
described briefly. In an effort to provide a predictive capability for describing mixed-mode frac- 
ture, the crack tip process zone is modeled using a cohesive zone description. The idealization of 
the crack tip processes in terms of the cohesive zone model is described in Section 3. The cohe- 
sive zone model may be incorporated into any numerical scheme for generating crack growth 
computations, but the boundary integral formulation is the most advantageous since it does not 
require extensive remeshing; the BEM formulation is described in Section 4. Two example 
problems describing the application of the method to crack growth predictions are described in 
Section 5 in order to demonstrate the potential of the method. Finally, in Section 6, the results of 
the cohesive zone model for the solid propellant mixed-mode fracture are presented. 

2.  Experiments on the mixed-mode fracture of solid propellants 
We examined the use of a compact-tension-shear specimen to investigate the mixed mode frac- 
ture criteria for solid propellants. This specimen, shown in Fig. 1 along with the loading grips, 
was introduced by Buchholz et al (1987) and has been successfully in our laboratory in the past 
in examining mixed mode fracture in polymers (Mahajan and Ravi-Chandar, (1989)) and poly- 
mer interface cracks (Foltyn and Ravi-Chandar, (1990)). The stress intensity factors Kj and KJJ 

for this geometry are given as (see Buchholz et al (1987)): 



K, cos or 
F r~  i  a 
—y/na     1  
wt w 

0.26 + 2.65 
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f   a   V 
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Kr, sin or 
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+ 2.08 
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where or is the angle between the normal to the crack and the load line, P is the applied load, a is 
the crack length, w is the specimen width and / is the specimen thickness. In the tests performed 
for this report, these dimensions were: a = 2in;w = 4 in and t = 0.2 in. The crack was introduced 
into the specimen by cutting a slit to half the width of the specimen. The specimen and loading 
attachments were placed on a specially designed test frame capable of cross head rates of up to 
100 in/min; the crack tip region was captured using a videocamera in order to determine the on- 
set of crack growth. The load and load-point-displacement were recorded from the test machine. 

The experiments on the solid propellant specimens provided by the Phillips Laboratory were 
performed under constant rates of cross-head extension; in the range from 0.01 in/min and 10 
in/min; the angle a was varied in the range from 0 to 90. Three different temperatures (-65 F, 
+70 F or 165 F) were considered. The details of the experiments and their results are reported in 
the Final Report to Raytheon STX Inc, who provided the contract from Phillips Laboratory for 
the performance of the tests. Figs. 2, 3 and 4 summarize the results corresponding to +70 F. The 
onset of mixed-mode crack initiation is well characterized by the MTS theory as seen in Fig. 2. 
There is a significant rate-dependence for the mode I stress intensity factor as shown in Fig. 3; 
this implies that a viscoelastic model is necessary for the characterization of the fracture of the 
solid propellant. Finally, in Fig. 4, the variation of the kink angle with the loading mixity is 
shown; clearly the MTS theory does not predict the kink direction, especially at large values of 
mode II loading. The large damage that is introduced near the crack tip in the process zone is be- 
lieved to be the main reason for this discrepancy. In an effort to overcome this, a cohesive zone 
model is proposed to represent the damaged zone near the crack tip as described in the next sec- 
tion. 

3.   Cohesive zone model for a crack in elastostatics 

In this section, we consider the idealized model of a line fracture process zone near the crack tip. 
This model of the fracture process zone is motivated by the fact that in some materials the crack 
surfaces are usually not separated completely behind the (fictitious) crack tip. There exists a 
relatively long extension of the crack - variously called the wake zone, the bridging zone, or co- 
hesive zone - where tractions can be transferred across the crack line. In solid propellants, this is 
the damage zone in the crack tip region. The key assumption in this model is that material sof- 
tening or damage accumulation beyond the peak load is localized in a narrow layer behind a fic- 
titious crack tip, whose volume is negligible and whose action is replaceable by cohesive forces. 
Typically, two types of constitutive laws are used in the literature for cohesive materials: one is 



characterized by a traction-displacement relationship, the other one by a material constitutive law 
defined in terms of stress and strain accompanied with a thickening law of the layer. In the latter, 
thickening of a cohesive layer is decoupled which may be worthy of studying separately in vari- 
ous materials considering rate-dependence and under dynamic loading. However, for quasistatic 
loading - the case considered predominantly in the literature - a law describing the traction- 
displacement relation is sufficient for modeling of the cohesive zone. We present below one such 
law for a cohesive crack represented by a line spring connecting two coincident crack points - 
this seems to be the most appropriate model for crazing-dominant brittle polymers and fiber- 
reinforced composites. 

Consider a representation of the development of a crack shown in Fig. 5a. We suggest that 
two points, x+ and x~, originally coincident on opposite sides of a line, separate into two dis- 
tinct points, connected by the cohesive zone material; continued straining increases the separa- 
tion between these two points and eventually leads to cracking. The kinematics of this separation 
process are assumed to be described completely by the crack face separation, w. Introducing the 
local normal and tangent directions along the cohesive zone, w can be resolved into the normal 
separation distance (or the cohesive zone opening displacement) component, wn = u~ -u* and 

the tangential separation distance (or the sliding displacement) component wT = u~ -u*. In or- 

der to prevent the inter-penetration of the cohesive zone, wn > 0; equality holds only in the case 
that there is contact between the top and bottom surfaces of the cohesive zone and in this case, 
we must also provide a description of the frictional resistance on the surface as well. We con- 
sider first the case of a locally opening mode crack with wn > 0 and describe the force- 
separation law for the cohesive zone. The cohesive material may be modeled by a simple line 
spring that behaves according to the following: 

p = k(wd)y/, (5) 

or in component form 

'■-«"'>'■, (6) 

where p is the traction vector with normal and tangential components, pn and pT, respectively. 
Wd is the maximum separation distance between two originally coincident points on the crack 
over the entire loading history, and is used as a damage parameter. The stiffness of the cohesive 
zone material is denoted by k{wj) and is assumed to depend on the current state of damage. Note 
that k(wd) is a decreasing function of Wd, indicating the softening behavior of the material; this 
imposes an irreversibility of the damage process under unloading. Corresponding to each Wd, 
there exists a traction, pd, and a damage locus derived from Eqs. (5): 

Pd = Kwd)wd (7) 

The constitutive law described above is illustrated schematically in Fig. 5b. Note that the de- 
scription of the cohesive zone material through the damage parameter and stiffness allows for 
irreversibility of damage. Upon unloading, the points on the cohesive zone unload linearly with a 
stiffness k(wd), whereas in most cohesive zone models, unloading occurs along the damage locus. 
Including the unloading effect has expanded the capability of the cohesive crack model in simu- 
lating realistic fracture behavior significantly. There are two critical states along the damage lo- 



cus. The first one, at wj = 0 and pj = py, represents the maximum traction that can be sustained 
by the material before the cohesive zone begins to develop; beyond this critical level, separation 
processes begin and wd increases. The point on the specimen that is at this state is usually called 
the fictitious crack tip or the cohesive zone tip. The second critical point on the damage locus 
occurs at wj = w/ and pd = 0; this point represents the maximum displacement jump across the 
cohesive zone that can be sustained before cracking; beyond this level, the traction goes to zero 
and the two initially coincident points are now completely separated. The point on the specimen 
that is at this state is usually called the physical crack tip. Hence, Eqs. (5) and (6) together, define 
the complete process of separation of a material point into a crack, as long as w„ > 0. A consti- 

tutive law in stress-strain for a cohesive material can be described in a similar manner (see Yang 
and Ravi-Chandar, 1996). The transition ofthat law to this law is apparent. 

We now turn to the case when wn = 0. Under arbitrary loading, contact of two crack surfaces 
could occur. In such cases, as shown in Fig. 6a, we must provide an appropriate description for 
the development of friction along the cohesive zone, in addition to the line-spring model de- 
scribed above. We note that this is a generic development and not particularly applicable to the 
case of the solid propellant; for the propellant, it might be appropriate to set the friction coeffi- 
cient to zero. We model the frictional interaction simply through a Coulomb type law. Thus, the 
tangential interaction of the crack surfaces in contact is given by 

Pz = k(wd K ~ sgn(wr )fpn, (8) 

where/is frictional coefficient. The equation for the determination of the normal component of 
the traction pn is obtained by enforcing the contact condition w„ = 0. In Eq. (8), the first term 
represents the tangential traction contribution due to the line spring described above (nontrivially 
if it is not broken completely) and the second term represents the Coulomb friction component. 
In order to attain smooth transition of frictional force near wT = 0, the frictional coefficient/may 
be assumed to be 

/ = ™rd (9) 
/0, otherwise, 

where/o and w^ are both non-negative material constants. Function/is plotted in Fig. 6b. This 
completes the description of the cohesive zone material behavior. 

There still remains the issue of deciding on the appropriate incorporation of this model into an 
elastostatic crack problem. One major question that arises is the following: What is the criterion 
that can be used to grow the cohesive zone from a stress contentrator? The incorporation of the 
cohesive zone model eliminates energy release criterion from consideration since the energy re- 
lease rate will always be the same regardless of the direction of crack extension - it is simply the 
area under the damage locus, assuming a fully developed cohesive zone. The most plausible cri- 
teria, particularly for the line-spring nature of the cohesive zone mode, are stress based criteria 
such as the maximum principal stress criterion or the maximum tangential stress criterion at the 
fictitious crack tip. Assuming that one of these criteria would be appropriate, a second major 
question arises: What should be the step size in extending the crack along this direction? In finite 
element formulations, such as those of Xu and Needleman, (1994), and Ortiz (1996), cohesive 



zones are forced to develop along element boundaries and the extension is over the side of one 
entire element. The approach in these models is to make the element size so small that the overall 
crack growth behavior is captured adequately. In other words, the macroscopic crack path is sug- 
gested to be independent of the length scale of the discretization when the latter is sufficiently 
small compared to characteristic structural length scale. In the present work, we choose the 
maximum principal stress criterion for determining the crack increment. If the maximum princi- 
pal stress at a fictitious crack tip reaches the critical value, py, this tip is ready to run under fur- 
ther loading. The direction in which the tip advances is perpendicular to the direction of the 
maximum principal stress at that point, and the extension is such that the maximum principal 
stress at the new tip position is kept at the critical value py, during continued loading. However, 
note that, structural instability may occur while a crack is advancing; i.e., extension of a crack 
may enhance the stress state at a crack tip rather than release it. In this case, the crack may run 
fast and inertia effects may have to be included. 

4.  Boundary integral formulation of the elastostatic crack problem with a cohesive zone at 
the crack tip 

Boundary element method (BEM) has received much attention recently, especially in application 
to fracture mechanics (FM) (see Cruse, 1996 and Aliabadi, 1997 for reviews). The method is at- 
tractive because it involves discretization of the boundary alone; the dimensionality of the stiff- 
ness matrix formed in BEM is then reduced by one in comparison to a domain method, such as 
finite element method (FEM), although the stiffness matrix is full and asymmetric in general. A 
particularly attractive advantage of BEM in application to crack problems over FEM is that do- 
main remeshing is not necessary when a crack grows; only one more element of a crack is added 
with all the already existing elements untouched. However, as a crack is modeled mathematically 
with the two crack surfaces being coincident, the classic boundary integral equation (BIE) can 
not be applied directly or the resulting stiffness matrix formed will be ill-conditioned. A great 
deal of effort has been expended in dealing with this difficulty; many methods - such as the crack 
Green's function method (Snyder and Cruse, 1975), the displacement discontinuity method 
(Crouch, 1976, and Wen, 1996), the subdomains method (Blandford, Ingraffea and Liggett, 
1981), the dual boundary element method (DBEM) (Hong and Chen, 1988, Portela, et al, 1992, 
and Chen and Chen, 1995), the single-domain traction boundary element method (Young, 1996), 
and some hybrid methods optimizing the advantages of some of the above mentioned methods 
(Ameen and Raghuprasad, 1994) - have been proposed. It is not our intent to review these meth- 
ods here; one may see Chen and Chen (1995) for a discussion of some of these methods. Among 
the methods mentioned above the method of subdomains eliminates the discrepancy noted above 
by cutting a cracked structure into pieces of simpler topology such that BIE can be applied prop- 
erly to each of domain separately. However, this formulation increases the computational effort 
as a result of the additional artificial boundaries that appear from the cutting process; moreover, 
when a crack advances, remeshing is still needed in general. Nevertheless, the idea of the method 
of subdomains is valuable and is adopted in the present paper to derive a mathematically rigor- 
ous and simple formulation of the single-domain dual-boundary-integral equations (SDDBIEs) 
of a cracked structure. The classic dual integral equations for a simple structure is, of course, 
well established in the literature. These SDDBIEs were given by Young (1996), and applied to 
solve a traction-free crack problem using continuous elements. 



4.1. Summary of the dual integral equations for a simple structure 

Consider a homogeneous, isotropic, linearly elastic domain Q with piecewise smooth boundary 
T as shown in Fig. 7. A Cartesian (Lagrangian) coordinate system1 is used along with standard 
indicial notation. The displacement components ut (X), at a point X, can be represented in the 
following form: 

cv(X)ii/X)=J{«;(X,x)p/x)-p;(X,x,n)u/x)}(fr(x)+Ju;(X,x)&>(x)Äl(x), (10) 
r n 

where Pj are traction components, bj are body force components, w* and /?* are the fundamen- 

tal solutions representing the displacements and tractions respectively in the 7th direction at a 
field point x due to a unit force acting in the z-th direction at a source point X. Note that /?*. are 

taken along the outward normal vector, n, of T at x and that with the inclusion of n in ptj, the 

dependence of the integrals on the normal is made explicit. Cy is a coefficient matrix given by 

£y = 

4 Xefi; 
ca XeT; 

0 otherwise, 
(11) 

where Stj is Kronecker delta, and ctj = StJ/2 if the tangential surface at X is smooth; if it is not the 

case one may see Hartmann (1980) for the closed-form expressions of this matrix. When XeQ, 
Eqs. (1) with Cy — StJ is called the Somigliana identity. One may easily prove that, if X is outside 

Q and T, Eqs. (10) holds trivially with Cj, = 0. The form of Eqs. (10) most useful in the bound- 
ary integral formulation arises when XeT. Applying a limiting process as X approaches a 
boundary, the Somigliana identity leads to the boundary integral equation of displacements 
(BIED, or usually BIE), based on which the classic boundary element technique is developed 
(Brebbia, Teiles and Wrobel, 1984). 

Differentiating Eqs. (10) with respect to X (with X eQ) the strains over Q can be calculated. 
If these strains are substituted into Hooke's law, the integral equations of stresses at a source 
point X (with X e Q) are obtained. A limiting process, similar to the one used to obtain the BIE, 
can be applied to the resulting integral equation as X approaches a boundary, leading to the 
boundary integral equation of stresses. These integral equations are summarized below: 

Cik(X)crkJ(X) = \{u;jk(X,x)pk(x) - P;{X,x,n)uk(x)}dT(x) + \u;jk(X,x)bk(x)dQ(x),   (12) 
r n 

where U*k and P*k are linear combinations of derivatives of M* and /?*, with respect to X. As in 

the case of /?*, P*k are taken along the outward normal vector, n, of T at x. Cy is a coefficient 

matrix given by 

1 Standard index notation is used. The range for Latin subscript indices is 3 and the range for Greek subscript indices 
is 2. Summation over repeated subscripts over their range is implied unless suspended explicitly. Superscripts do not 
follow this range and summation convention; their range would be indicated explicitly and summation is indicated 
by the summation symbol. 



Cy 

4 X€Q; 

SUI2   XeiT; (13) 
0 otherwise, 

which is identical to c,y provided that corner points where tractions are not well defined are ex- 
cluded. If Eqs. (12) are multiplied on both sides by the outward normal vector at X as XeT, 
then, the boundary integral equations of tractions (BIET) are obtained, which may be employed 
to formulate a boundary element method in a similar way as BIE. 

The fundamental solutions used in the above formulation are due to Kelvin (Love, 1944), and 
are the basic singular solutions to a point load in an infinite medium. The components u* and p*. 

are given below for two (plane-strain) and three dimensional problems: 

M;(X'X)=IM^[(3-4^+^]' 

(3-4v)k{^+r,r, ul(X,x). 

pUx,\,n): 

STT/J{1 

(3-D) 

(2-D; plane-strain) 

-1 

4än(\-v)ra dn 
({l-2v)SiJ +ßr.r.)-{l-2v){rinJ -r,»,) 

(14) 

(15) 

(16) 

where // is shear modulus, and v is Poisson ratio; a = 2, ß = 3 for three dimensional prob- 

lems and ä = 1, ß = 2 for two-dimensional plane-strain problems. Moreover, r - r(x,x) rep- 
resents the distance between the points X and x, and its derivatives are taken with respect to x. 
ulk and Pyk are given by 

^(X'X)=4^(l-v)r^(l"2V/)^^ +r^ -r^)+^rJr*l 

+ ßv(r;njr* + »W* )+ & - ^pn^rj + njSik + nßjk)- (1 - 4v)ntSu }, 

(17) 

(18) 

where a and ß are as given above, and y = 5 for three dimensional problems and y = 4 for 
two dimensional problems. The plane strain expressions are valid for plane stress provided that 
v is replaced by v = v/(l + v). As a source point X and a field point x coincide on a boundary, 

the integral kernels of w*, p'y, U*Jk, and P*k may be singular and even hypersingular. The corre- 

sponding integrals in Eqs. (10) and (12) are taken in the sense of Cauchy principal value if sin- 
gular, and are taken in the sense of Hadamard principal value if hypersingular. 

4.2. Single-domain dual integral equations for a cracked structure 

A structure containing a mathematically sharp crack degenerates the boundary integral formula- 
tion due to coincidence of the two crack surfaces. In that case, one cannot apply either BIED or 



BIET to produce a boundary element method directly in general. This problem has been ad- 
dressed in a number of ways: partitioning the domain into multi-domains, using crack Green's 
functions, the displacement discontinuity technique, and so on. In this section, we describe the 
formulation of a single-domain dual-boundary-integral method using Kelvin's solutions. We cut 
a cracked elastostatic structure into subdomains of simple topology so that the dual integral 
equations for a simple structure can be applied to each domain appropriately. In a further step, 
using the continuity and equilibrium conditions along artificial boundaries, as well as some prop- 
erties of the integral kernels, we eliminate entirely the integrals involving any artificial bounda- 
ries. In order to illustrate the derivation of the single-domain integral equations, we shall con- 
sider a structure containing one crack; however, the same approach can be applied to any number 
of cracks in the structure. Furthermore, for simplicity, we shall ignore the body forces; if neces- 
sary, they may be added back into the final equations without any difficulty. 

As shown in Fig. 8, a structure containing one crack is cut into two subdomains with a path 
that passes through the crack. We denote the two subdomains without a crack by Q, and Qn 

respectively. Their boundaries are denoted by T, and r„ respectively. The topology of the sub- 
domains is simple such that Eqs. (10) and (12) may be applied to them. This results in the fol- 
lowing sets of equations for the displacement and traction components in the two subdomains. 
For the domain Qz, we have 

4(x)M;(x) = J{M;.(x,x)^.(x) - ;,*(x,xy >;.(x)}rfr(x), (19) 

with 

4 
Sv    XeQ,; 

c\    XeT, 

0 
i' 

otherwise, 

(20) 

and 

£L(x)oj(x) = \{u;Jk(x,x)pi(x) - />;(x,xy>j(x)}rfr(x), (21) 

with 

C1 = 

Sik XeO,; 

ÖJ2 Xer,; 

0 otherwise. 

(22) 

For the domain Qn, we also have 

cj(xK(x) = l{u;(x,x)p^x)-P;Xx,xyyj(x)}dr(x), (23) 

with 



£?- 
4 Xen„; 

< Xern; 
0 otherwise 

(24) 

and 

c;i(x)^(x) = j{u;k(x,x)Pf(x)-p;(x,xy)uf(x)}dr(x), (25) 

with 

^ ,7.       ^•it 

Slk,       XeQn; 

4/2,   Xern; 
0, otherwise. 

(26) 

All of the functions are defined for all X and are single-valued. Thus, we add Eqs. (19) and (23), 
and Eqs. (21) and (25) algebraically, and rearrange them in the following forms: 

4(X)M;(X) + ^(X)M»(X)=J{M;(X,x)^(x)-jP;(X,x,n)U.(x)}^r(x) + 

j" {M;(X,x)[^.(x) +^(x)]-[^(x,x,n>;.(x) + ^(x,x,nII)M°(x)]}^r(x), (27) 

and 

& (XK (X) + C; (XV« (X) = \{u;k (X,x)Pk(x) - />; (X,x,nK (x)}dT(x) + 

J{^i(X,x)[^(x) + rf(x)]-[p;(x,x,n>i(x) + p;(x,xVKn(^W. (28) 

where the superscript ex denotes an external regular boundary, the superscript c denotes a crack 
boundary, and the superscript a denotes an artificial boundary generated by the cutting process. 
Moreover, the integrals over T,ex and T^ have been put together with T" = T™ + r,f; the su- 

perscripts I and II have been dropped since r" and r„x do not overlap. Equilibrium of the 
whole structure indicates that the tractions on two coincident opposite artificial boundaries are 
equal in magnitude and opposite in direction; i.e., 

pl(x) = -p?{x), asx € r\ (29) 

Also, due to the requirement of continuity of the displacement components at the coincident 
points on the artificial boundaries, it holds that 

u]{x) = u?{x), asx € r°. 

Moreover, the integral kernels in Eqs. (7) and (9) have the following properties: 

P;j{X,x,-n) = -pl{X,x,n),i.e.,pl(x,x,nl)=-pl(x,x,nil) asx € re+fl, 

/>;(X,x,-n) = -P*k(X,x,n),i.e., />;(x,x,nI)= -p;(x,x,nn) asx 6 Tc+' 

(30) 

(31) 

(32) 
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In deriving the above, the reversal of the outward normal n at the two coincident points on the 
crack and artificial boundaries has been applied: 

nI(x) = -n"(x) asx e Tc+a. 

Using Eqs. (15), (17), and (20) through (23) to Eqs. (18) and (19), we obtain 

7,(X) = \{ul(Xtx)pJ{x)-pl(X,x,n)uJ{x)}dr{x) 

J{M;(x,x)(/>;(x) + /,;(x))-jp;(x,x,n+Xw;(x)-M;(x))}firr(x), 

(33) 

+ (34) 

with 

/,(X) = 

w,(X) XGQ; 

c,(X)w,(X) XeP; 

c;j(X)u+
J(X) + c-(X)u-(X) XeTc; 

0 otherwise, 

(35) 

and 

+ 

with 

JAX) = JK*(X,x)^(x) - i>;(X,x,nK(x)}^T(x) 
Y" 

l{u;k{X,x)(p+
k(x) + p-(x))-P;(x,x,n+Xu+

k(x) -«;(x))}dT(x), (36) 

■MX) 

'<r„{X) XeQ; 

o-j,(X)/2 Xer"; 

(^(X) + cr-(X))/2   Xel"; 

0 otherwise, 

(37) 

where the superscript + indicates one side of a crack, and the superscript" indicates the corre- 
sponding opposite side, instead of the superscripts I and II. The positive side of a crack may be 
chosen arbitrarily, for convenience. Eqs. (34) and (36) are so-called the single-domain dual inte- 
gral equations of a cracked structure; in these equations the integrals are taken only along the 
regular external boundary and one side of a crack. The artificial boundaries that appeared due to 
the cutting process have been entirely eliminated from consideration. If a structure contains mul- 
tiple cracks, the single-domain dual integral equations are given in the same forms as Eqs. (34) 
and (36). 

Eqs. (34) and (36) with a source point on the boundary, i.e., X eFex+c, are of the most im- 
portance, in the formulation of boundary integral equations for elastostatic problems. In formu- 
lating a general boundary integral method using Eqs. (36), it is advantageous to use tractions in- 
stead of stresses since the number of unknowns can be reduced. If Eqs. (36) are "multiplied" on 
both sides by the outward normal at the boundary point X as usual the traction version of Eqs. 
(36) with X eTCT+c can be obtained as 
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Jy(X)nj(X) = j{u;k(X,x)pk(x) - i>;(X,x,nK(x)}«;(X)JT(x) 
r" 

+ l{u;k(X,x)(P;(x) + p;(x))- />;(x,x,n+X<(x) -ii4-(x))}nj(X)dT(x). (38) 
r 

Note that, as X eTc, H,(X) is taken to be the outward normal of the positive crack side, i.e., 
»/x)=n;(x). 

Note that on the crack surfaces, the tractions are self-equilibrating and hence 

«;(X)(a-;(X) + o--(X))/2 = jp,+ (X) and P;(x) +P;(x) = 0. (39) 

Eqs. (39) can be used to simplify Eqs. (34), (36) and (38) when applying to cracks. In this case, 
traction and displacement jump on a crack may be regarded as independent variables in a nu- 
merical formulation, with the least unknowns. 

4.3. Iterative boundary element method of successive over-relaxation 

The behavior of the cohesive zone materials and the criterion for crack advance described in the 
last section require that an incremental loading procedure be used when solving boundary value 
problems. Moreover, an iteration process is indispensable in each loading step in general due to 
the fact that the constitutive law of the cohesive zone material, given in Eqs. (5) - (9), involves 
irreversible damaging process, and is essentially history-dependent. Furthermore, the stiffness of 
the model line spring of the cohesive zone material, kw<j), is in general a part of the solution, 
which may or may not be dependent on the current displacement discontinuity; in other words, 
there is no simple relationship between the traction and displacement discontinuity on a crack 
which may be used to achieve a linear system of equations to solve the problems numerically. 
Two strategies of iteration are possible in general: in the first, a linear system of equations of the 
discretized problem is formulated using the stiffness of the cohesive zone material obtained in 
the previous iteration step, and is solved by a typical solver either direct or iterative. The stiffness 
of the cohesive zone material is then modified based on this solution, and the process is repeated 
until the solution of the desired accuracy is achieved. In the second strategy, a nonlinear system 
of equations of the discretized problem is formulated using the stiffness of the cohesive zone 
material as unknowns, and is solved iteratively. By the first strategy, the iterative procedure is 
very clear and the convergence of the iteration process is expected. However, it is apparently 
time-consuming even with a very efficient solver of a linear system of equations; the linear sys- 
tem of equations is solved fully many times until a solution is achieved. On the other hand, the 
total time for a solution by the second strategy, if a good iterative procedure is found, would be 
in the same order as that for one step of the iteration by the first strategy (solving the linear sys- 
tem of equations once). In the present work, we adopt the second strategy and formulate an it- 
erative method of successive over-relaxation for the present nonlinear problem of a cohesive 
crack. The solution procedure of this iterative method will be described below, following discre- 
tization of the boundaries and the boundary integral equations. 

The boundaries of a cracked two-dimensional structure are approximated by straight elements, 
Tel s, of which each contains Net nodes that are uniformly distributed in it, as shown in Fig. 9. 
These nodes are numbered separately on the external boundary and on the crack locus. Assume 
that we have A/6* nodes on the external boundary and N° nodes on the crack locus. A field quan- 
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tity, q(x) can be approximated over an element Tel by interpolating the nodal values, q" in this 
element as 

q(x) = f>"(x)q\ (40) 

where the interpolation function, ^"(x) satisfies the following conditions: 

The interpolation functions may be constant, linear or quadratic, depending on the required accu- 
racy of the representation. Substitute Eq. (40) into Eqs. (34) and (38) with X eTex+c, the discre- 
tized forms of the dual boundary integral equations are obtained. Thus, one obtains 

T{gm
a;p"ß-K;u;)+NZK;w; -IJXm) = 0,     m=l,2,...Nex + Nc, (42) 

and 

N" N"+Nc 

YSp7PP
n

ß-K>nß)+   ^H™w; -Ja/£Xm)nJXm) = 0,      m = l,2,...Nex + Nc. (43) 

Eqs. (38) and (39) each represent 2(A/ej: + If) equations that are the discretized version of Eqs. 
(25) and (29). In these equations, g%, h™, G%, and H% are given explicitly by: 

g7p = Ju^(x-.x>-(x)dr(x), (44) 
r 

Ä:;=K(xm,x,n>"(x)jT(x), (45) 
r" 

GZ = \KSß (x".x y [x)ns (Xm ]dT{x), (46) 
r" 

H7ß = |Pi(xm,x,n>"(xK(x'"Vr(x), (47) 
r" 

where T" is the element where the wth node is located. Eqs. (44) through (47) may be evaluated 
numerically if Xm gT", and analytically if Xm eP. Note that the condition for a self- 
equilibrating crack, Eq. (39), has been used in the above equations. If u and p, are a trial set of 
displacements and tractions, Eqs. (42) and (43) would not be satisfied in general; instead, we 
obtain the following residuals: 

CM = iL{gmM -KW)*   ZW -/oCX"), m = 1,2,.. JV"+JV, (48) 

K{^v) = f,{G:;p"ß-H:;U;y
NafdH:;w"ß -JaßC)nßLm), m=l,2,...Nex + Nc. 

n=\ n=N"+\ 
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(49) 

We call r™ the displacement residual and R™ the traction residual. If the residuals are close 

enough to zero, the trial set of u and p represents an approximate solution of the boundary value 
problem. At all regular boundary points, either the displacement or the traction vector compo- 
nents are prescribed; thus only one of Eqs. (48) and (49) would be used in assembling the overall 
system of equations. For points that are in the cohesive zone, both the traction vector and the 
displacement discontinuity vector are unknown but related to each other through the constitutive 
description of the cohesive zone material provided in Eqs. (5) - (9). From Eq. (49), for a point m 
that lies on the cohesive zone, the residual can be written as a relation between the displacement 
jump vector v?(Xm) and the traction vector p(Xm). Note that points on the crack are simply spe- 
cial cases of the cohesive zone where the stiffness has decreased to zero and where w(XOT) is un- 
restricted except that w„(Xm) > 0. Hence the complete set of all residuals at all nodal points can 

be calculated. Note that in order to incorporate the crack opening, crack sliding, and crack con- 
tact modes of deformation in a convenient way, field quantities in the discretized equations must 
be transformed into the local orthogonal coordinates in terms of the normal and tangential direc- 
tions. We now turn to a description of an iterative solution scheme for solving Eqs. (48) and (49) 
for u and p. 

For a node m on the external boundary, either Eq. (48) or Eq. (49) could be used, depending 
on whether the imposed boundary condition at that point is a displacement or a traction condi- 
tion. For the iterative solution scheme, in general, a field quantity q™J+l at the (/+l)th iteration is 

written in terms of its value at the / * iteration, q"J, and an increment that depends on the re- 
siduals as 

m,/+l        „m,l R 
9a = <la 

(50) 
dR/dq: 

where R is the appropriate residual for the field quantity q" at the /* iteration. At the (/+1)01 

iteration step, the displacement component at this node, w ™'/+1, if not prescribed as a boundary 
condition, is calculated using the results at the Z01 iteration by 

um
a
M = um

a
l + co r;(u,p)/(caa +/C), (no sum on a) (51) 

where co is an adjustable factor of relaxation. The displacement residual, r ™ (u, p), is computed 
using the nodal values at the (l+l)'h iteration step if available, or at the Ith iteration step. Simi- 
larly, a traction component, p",M, if not prescribed as a boundary condition, is calculated using 
the results at the /* iteration by 

pm
a
M = Pmj + COR:(U,P)/(0.5-G::), (nosumona) (52) 

where the traction residual, R™ (u, p), is dealt with in the same way as r™ (u, p). For a node m 

which is on the cohesive zone, we calculate the displacement discontinuity, w™'M, in opening 
mode by 

<M = <' + * K (n, V)l{kmj - HZ),        (no sum on a) (53) 
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where tu is another adjustable factor of relaxation, and K' is calculated using Eq. (31) with 

w If the normal component of w at the (/+1)   iteration step, w™'    , is negative, it is set to be 

zero for no penetration of the crack surfaces. The tangential component of w at the (l+l)th itera- 
tion step, vt/"',+1, is re-calculated by 

w:-M 
= <•' + m /C(u,p)/(r'' -foP:'M /w*-/C). (nosumonr) (54) 

where the frictional mode of the cohesive crack is activated. wrf = w^ if vC' 

w«/ = 

sary. 
*ZJ 

< Wrf; otherwise 

. Note that no special iterative process for mixed crack opening and contact is neces- 

We now describe the marching scheme used in the numerical solution; the solution procedure 
is implemented in three steps. Suppose that the solution at a previous loading step is already 
known. In order to solve the problem in the current loading step, first the cracked body is iterated 
to be in equilibrium with all the current cohesive nodes being held at the same displacement, us- 
ing Eqs. (51) and (52); in this step, the cohesive zone material law is not used. In the second step, 
the cohesive zone nodes are made free to displace according to the constitutive laws described 
above. The whole body is iterated again to be in equilibrium using Eqs. (51) through (54). This 
holding and releasing process is found to produce quicker convergence for the iteration process 
than other schemes when a crack is advancing. The absolute difference of either displacement or 
traction at a boundary node between two next iteration steps is used to judge the convergence. 
The best relaxation factors of oo and m can be obtained through some trial computations and 
these factors vary in general with the geometrical configuration of the body and loading condi- 
tions. Note that in the second step, the fictitious crack tip has not been allowed to move. After 
the equilibrium of the cracked body is obtained without crack advance, in the third step, stresses 
at a point of the fictitious crack tip are calculated using Eq. (36); note that a constant element is 
always used at the fictitious crack tip avoiding the difficulty of the integration due to the hy- 
persingularity in the fundamental solution. If the maximum principal stress at this point is over 
the critical value, i.e. py, the fictitious crack tip is forced to advance a small increment in the di- 
rection perpendicular to the maximum principal stress. This is accomplished by increasing the 
length of the last cohesive tip element if the advance step is smaller than a specific value; other- 
wise, a new crack element would be added. In this paper, we set the crack advance step to be 
equal to the cohesive zone tip element size; the ratio of the crack advance step to the crack ele- 
ment size could play a role in determining the local crack patterns in situations where the crack 
path is unstable, but this issue is not considered in this paper. Note that in general, a numerical 
stepwise scheme of crack advance may generate sharp corners between the approximating 
straight elements of a crack which may concentrate stresses; these stress concentrations are of a 
lower order than the crack tip concentration. Investigating the role of these corners problem is of 
less interest than that of examining the crack tip; thus, in the present paper, we neglect the 
weaker corner singular point while dealing with a crack. Note also that at the current loading 
level, the above procedure of crack advance is repeated, and the iterative solution over whole 
body is obtained until the maximum principal stress is not above py at any point in the body. This 
procedure achieves the solution in the current loading step. The load is then incremented and the 
procedure repeated to march both the loading and the crack extension. In the following, we shall 
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apply the method formulated above to some problems of a cohesive crack, and demonstrate the 
capacity of this method. 

5.   Applications 

We turn to a demonstration of the capability of the boundary element strategy for handling of the 
cohesive cracks described above. In order to explore different aspects of the constitutive model 
for the cohesive zone that has been assumed in this paper, we consider two problems. The first 
problem concerns a single-edge-crack in a rectangular specimen under uniform far field tensile 
loading. For small initial crack lengths the crack extension in this configuration is unstable under 
displacement control; however, deep cracks exhibit stable crack growth. The results of this 
problem are discussed in Section 5.1. The second problem considered is a demonstration of the 
capability of the formulation to handle mixed-mode crack growth and crack interaction; using 
the same loading as in the first problem, but with an offset double-edge crack configuration, the 
trajectories of the two edge cracks are tracked. The results described in Section 5.2 show that the 
model duplicates the commonly observed behavior of two approaching cracks, and that the crack 
patterns exhibit a sort of bifurcation with the offset. 

The following conditions describe the details of the simulation that are common to both 
problems. The domain of interest is a rectangular two-dimensional region of length / and height 
h, taken equal to / in these simulations. In these simulations, all length quantities are normalized 
by /; while this is not a natural length scale for the fracture problem, it is convenient and easily 
interpreted. If it is desired, a scaling to an intrinsic length scale, such as the critical crack opening 
displacement for the cohesive zone, w/, may be effected easily. The deformation of the specimen 
is assumed to be in plane-strain. An initial process zone of length 0.02 is assumed to exist at the 
tip of all cracks in all simulations described in this paper; the damage parameter wj is assumed to 
increase linearly from zero at the fictitious crack tip to wf at the physical crack tip. Note that this 
initial damage zone can be prescribed arbitrarily and is in general unknown in the physical 
problem. The boundaries are discretized into discontinuous elements with a constant or quadratic 
interpolation over the element. Specifically, the straight-line segments on the external boundary 
are divided into 10 elements with quadratic interpolation; the length of each element is 0.1 and 
the nodal spacing is 0.0333. The initial crack (outside of the cohesive zone) is also divided into 
quadratic elements with a nodal spacing 0.01. The initial process zone is divided into equally- 
spaced elements of size 0.01 with quadratic interpolation, except for the element at the fictitious 
crack tip which is taken to be a constant element. When a fictitious crack tip advances, one new 
constant element of size 0.01 is added as the corresponding new fictitious crack tip element. The 
old fictitious crack tip element that is now an interior element within the cohesive zone is then 
redefined as a quadratic element using three nodes inside it. The constitutive law of the cohesive 
crack is assumed to be represented by a straight line as shown in Fig. 10, which is certainly the 
simplest one defined by the two parameters py and w/, these parameters are taken to be py = 0.01 
and w/= 0.001. Note that all stress and traction quantities are normalized by ß. Poisson's ratio is 
taken to be 0.3. The unloaded specimen is initially in a stress free state. It is loaded incrementally 
in the direction perpendicular to the top and bottom boundaries under displacement control. The 
increment of the loading displacement is taken to be 1E-5 in tension and -1E-4 in compression. 
The relaxation factors were chosen initially by trial and error and were subsequently fixed at co = 
0.6 and m = 1.4. 
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In the following simulations, the boundary (including the cracks) is discretized into 150 to 350 
nodes depending on the crack length resulting in a system of 300 to 700 equations (or degrees of 
freedom). In addition there are a few equations that provide the connection between tractions and 
crack opening displacements on the cohesive zone. If the stiffness of the cohesive zones is not 
modified by damage, for each loading step, fewer than 100 iteration steps are needed to achieve a 
solution to the system of equation, with an accuracy of 1E-8 in traction components and 1E-9 in 
displacement components. If the stiffness of the cohesive zones changes through damage, but 
still without propagation of the fictitious crack tips, slightly more than 100 iteration steps are re- 
quired for each loading step. If a new cohesive element is added and accumulates damage, each 
loading step requires between 150 and 400 iteration steps. If the fictitious crack tip movement is 
sensitive to the load, quite a few new crack elements are added in one loading step; in this case, 
the required iteration steps may be as large as 1000, depending on the number of the new crack 
elements; fortunately, this does not happen often. We ran the code for the following problems on 
a Digital Alpha Workstation (200 4/100). Depending on the size of the discretized system, be- 
tween 10 and 30 iteration steps can be performed in one second. Run times are as short as Vi 
hours for small crack extensions; if long crack extensions are to be simulated the time required 
increases to the order of a few hours. 

5.1. Single edge crack under tension 

A number of simulations were performed with a single-edge-crack in the rectangular geometry 
shown in Fig. 11. The crack was considered to be along the line of symmetry and its initial 
length, öo, was varied from 0.03 to 0.78. The variation of the total load on the top boundary with 
the imposed elongation obtained from the simulations is shown in Fig. 12. The main result, of 
course, is that in these simulations, simply by prescribing the applied loads and the cohesive law, 
initiation and growth of the crack appear naturally. These results are the mode-I analog of results 
that were obtained under mode III by Yang and Ravi-Chandar, (1998) using a finite difference 
scheme. A number of remarks regarding these simulations are listed below: 

During the loading process of a stable configuration, the fictitious crack tip starts to advance 
first. Note that the critical point of load at which the fictitious crack tip starts moving is of no 
significance since it is dependent on the initial state of the cohesive zone. With continued 
loading, the physical crack tip also starts to move. At this stage, the two crack tips advance at 
the same rate, keeping the size of the cohesive zone-defined as the distance between the fic- 
titious and physical crack tips - a constant at about 0.1. This is considered to be the fully de- 
veloped equilibrium cohesive zone size under this condition; of course, the size depends on 
the cohesive material model and the geometrical constraint imposed in the specimen. 

If the initial crack length, a0, is small, crack initiation is unstable even under displacement 
controlled loading. In the numerical procedure, this is manifested by the fact that the stress, 
calculated at a point ahead of the fictitious crack tip is larger than py even after the crack ex- 
tension procedure has been applied over a length of many cohesive elements. This can also 
be inferred from the fact that the critical load for the onset of instability decreases with in- 
creasing initial crack length. Thus, crack extension and structural instability coincide in these 
cases. If the initial crack length is larger than about 0.48, crack extension is stable under dis- 
placement control. We examine later some issues related to crack paths in this range of stable 
crack growth. The behavior indicated by the sudden drop of load, for initial crack lengths less 
than 0.48 is usually referred to as a snap-back instability in structural mechanics. Note that 
the snap-back instability is also predicted by the stress intensity factor based linear elastic 
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fracture mechanics and is simply a structural feature of this configuration; it is not influenced 
qualitatively by the fracture model. 

• The evolution of the crack opening profiles and the cohesive tractions at the onset of unstable 
crack extension are shown in Figs. 9 and 10 for a few initial crack lengths in the unstable re- 
gion. Note that all these cracks had an initial cohesive zone of length 0.02 prior to load appli- 
cation. For long initial crack lengths, a steady-state cohesive zone of length 0.1 develops. 
However, for small initial crack lengths, at the onset of unstable crack extension, the cohe- 
sive zone is not completely developed. In other words, for short initial crack lengths, struc- 
tural instability appears before development of a self-similar crack tip process zone. If the 
dissipation in the cohesive zone is computed, the result indicates that the dissipation is a 
function of crack length. Note that the data used for Figs. 13 and 14 were obtained based on 
the numerical procedure of the loading displacement increment equal to 1E-5. A finer load- 
ing displacement increment may produce more developed cohesive zones representing their 
critical states instead of the ones plotted in Figs. 12 and 14; however, this characteristic of in- 
complete development of the critical process zone at the onset of unstable crack initiation 
will not change. A similar behavior was identified in the mode III simulation by Yang and 
Ravi-Chandar (1998) and used to determine the range of applicability of a single parameter 
characterization of fracture. 

In addition to the structural stability, the stability of the crack path is also of interest in crack 
problems. The single-edge-notched geometry used here is very stable to perturbations in the 
crack path. This is demonstrated by the results of the simulations shown in Fig. 15. Here the 
crack paths obtained from three simulations are shown. The only difference between these 
simulations is that the edge crack is offset from the line of symmetry by d0ffset. This offset, if non- 
zero, imposes a mixed-mode loading at the crack tip with the result that the crack path is no 
longer straight. The path stability of the crack is indicated by the fact that these cracks tend to- 
wards the line of symmetry. The main idea here is to demonstrate the capability of the present 
boundary element formulation to track arbitrary crack path evolution. Further investigations into 
the influence of the loading on the crack path stability are still under progress. 

5.2. Interaction of cracks in the double edge cracked specimen 

The last problem we consider in this paper is a double-edge-crack loaded in tension allowing 
crack interaction. This problem also provides an opportunity to examine cracks that exhibit 
structural instability. The geometry of the specimen is shown in Fig. 16. The initial lengths of the 
two edge-cracks, a\0 and a^0, are both set equal to 0.28. Each crack tips is again provided with an 
initial cohesive zone of length 0.02. In order to examine the approach of the two cracks towards 
each other, an offset d0ffse, is provided between the two edge cracks. The load-elongation curves 
for two cases ofd0ffset equal to 0.1 and 0.2 respectively are shown in Fig. 17. The deformed con- 
figurations showing the crack paths determined from the simulations are presented in Figs. 18 
and 19. The main observations and results are described as follows: 

• Initiation of the fictitious and physical crack tips is very similar to the cases described in 
Section 5.1. Note that the full geometry of the specimen is modeled and the anti-symmetry of 
the offset cracks has not been imposed externally. For both cases, the cohesive ones at both 
crack tips are fully developed. 

• For both simulations with doffset = 0.1 and 0.2, after initial stable extension of both crack tips 
over a length of about 0.1, structural instability occurs and the equilibrium formulation of the 
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problem may no longer be appropriate. At this point, the cohesive zone is fully developed. If 
we assume that the inertial effects are small in dictating the crack path, we may be able to 
determine the path evolution of these interacting cracks. We used the following strategy in 
our simulations to determine the crack extension behavior. At the onset of structural instabil- 
ity, the trajectory of the maximum principal stress from the crack tip is evaluated first; the 
cohesive zone - i.e., the fictitious and physical crack tips - is then extended along this prede- 
termined path, at fixed global displacement, until the stress ahead of the fictitious crack tip 
falls to py so that stability is restored. After propagating the crack according to this strategy 
for a length of about 0.1, stability is restored. We note, however, that this scheme did not 
work very well when the offset was very small indicating that inertia effects may indeed be 
significant and should be taken into account. 

• It is interesting to note that, in Fig. 18 for d0ffset = 0.1, the two cracks initially 'repel each 
other, pass over one another (overlap) and eventually approach each other along a curved 
path. This is very similar to the experimental observations of Melin (1983). On the other 
hand, in Fig. 19 for d0ffset = 0.2, the two crack tips 'attract' each other right from initiation. 
From a different point of view, the two crack tips approach the line of symmetry separately 
without much interaction in the early stages; we note that a single offset crack shows the ten- 
dency to approach the line of symmetry as demonstrated in Section 5.1. After initial exten- 
sions of the both cracks over a length of about 0.1 each, the left crack is completely shielded 
by the growth of the right side crack and only one crack grows in this case. The change of 
crack patterns with d0ffsel is a bifurcation phenomenon of significant interest (see for example, 
Mulhaus et al, 1996). The bifurcation can be understood in the following terms: consider 
unequal extension of one of the crack tips due to perturbations. For cracks with small initial 
offset distances, perturbations in the development of either crack tip results in increased 
loading of the lagging crack tip while for large initial offset distances, these perturbations re- 
sult in an increased loading at the leading crack tip. 

6.  Mixed-mode fracture with a cohesive zone 

In order to evaluate the influence of the development of a cohesive zone near the crack tip on the 
mixed-mode fracture behavior, the formulation described above was used to simulate the ex- 
periments described in Section 2. The geometry is as shown in Fig. 11, with the d0ffse, = 0 and the 
load applied at an angle 6 to the xj axis. The results are described in Figs. 20 to 22. In Fig. 20, 
the variation of the load against the load-point displacement is shown. For comparison, the corre- 
sponding linear elastic fracture mechanics results are also shown. Clearly, the two results indi- 
cate a good comparison suggesting that the maximum tangential stress criterion should be a good 
predictor for the initiation of crack extension. Note that we have used an assumed form of the 
cohesive zone model and hence are not yet able to make quantitative comparisons with the ex- 
perimental results. The comparison of the crack path predicted by LEFM and the cohesive zone 
model is shown in Fig. 21 and an enlarged view near the initial crack is shown in Figure 22. The 
deviation between the predictions of LEFM and the cohesive zone model in determining the 
crack path are clear. We believe that this is an indication that the development of damage near 
the crack tip leads to significant changes in the evolution of the crack path. Note that we have not 
provided any time dependence to the material behavior in this simulation; this will introduce 
further departure in the development of the crack tip process zone and hence in the crack path 
evolution. This aspect of mixed-mode crack growth is under further study. 
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7. Conclusions 

A single-domain, dual-boundary integral formulation of elastostatic crack problems incorporat- 
ing a cohesive zone model for the evolution of the fracture process is demonstrated in this paper. 
The cohesive zone is modeled as a damaging material with a prescribed behavior relating the ap- 
plied force to the crack opening displacement. The irreversible nature of the damage is intro- 
duced through the damage parameter w<], the maximum displacement experienced by a point on 
the cohesive zone during its history. The introduction of the cohesive zone necessitates an itera- 
tive solution procedure to solve the equations resulting from the boundary integral formulation; 
the method of successive-over-relaxation is used in this study. In terms of numerical simulations, 
the approach described here presents significant advantages over grid-based finite element meth- 
ods since the present formulation (i) does not force development of the crack along element 
boundaries and thereby introduce mesh size and element geometry dependencies, (ii) does not 
require fine nodal spacing except within the cohesive zone, and (iii) does not require remeshing 
with crack extension. Three example problems were considered to demonstrate the capability of 
this formulation to handle arbitrary in-plane crack problems, including mixed-mode problems, 
contact problems, and crack interaction problems. 
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Loading angle, a 

Figure 1. Mixed-mode loading geometry and grip attachments. 
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Figure 2. Failure interaction curve showing critical values of the mode-I and mode II stress 
intensity factors at crack initiation. The prediction of the MTS theory is also indicated. 
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Figure 3. Dependence of the mode-I fracture toughness on the loading rate. 
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Figure 4. Measured variation of the crack kinking angle with the mode mixity paramter 
5 = u/(l+u). Predictions of the MTS theory do not correspond to the experimental observations. 
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(a) 

Figure 5.   (a) Illustration of the two originally coincident points of a cohesive zone in the 
opening mode, connected by the line spring; (b) schematic diagram of the constitutive 
law of the line spring in terms of the traction and displacement jump. Note that 
instantaneous loading and unloading of the line spring is given by the slope k. 
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(a) (b) 

Figure 6.   (a) Illustration of two originally coincident points of a cohesive zone in the 
contact/sliding mode. The tangential interaction between the two points is modeled 
using a Coulomb frictional force and the cohesive force, if the cohesive spring is not 
already broken, (b) Sketch of the variation of the frictional coefficient of the contact 
surface. 
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Figure 7    An isotropic, homogeneous, linear elastic domain Q. with boundary T. 

Figure 8.   A domain Q containing a crack Tc is cut into two subdomains Qi and Qn along the 
dotted line path Ta. 
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Figure 9. The discretization of the boundary into elements is shown in this figure. Each element 
contains one or mode nodes distributed uniformly within the element. The nodes are 
internal to the element, indicating discontinuous elements. 

Figure 10. The two-parameter constitutive law for the cohesive zone material used in the 
simulations. 
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Figure 11. The configuration of a rectangular specimen with a single edge crack of initial length 

a0, under displacement controlled elongation. This initial crack is parallel to the 
loading boundaries, and may be offset from the symmetry line in a distance. 
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Figure 12.Load-elongation diagram of a set of simulations with a crack initially lying on X2 = 0 
and with a length a0 from 0.03, to 0.78. An initial cohesive zone of size 0.02 is assumed in all the 
simulations. The crack growth is in the pure mode I. For flo < 0.48 approximately, crack 
extension is unstable under displacement control. 
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Figure 13. Crack opening profiles at the critical point of instability in two of the simulations for 
a0 = 0.03 and 0.18. 
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Figure 14. Traction normal component p„ along the cohesive zone at the critical point of 
instability in four of the simulations for a0 = 0.03, 0.08, 0.13, and 0.18. The tangential 
component is zero indicating a pure opening mode for the cohesive zone. Note that, 
for very short initial crack lengths, the cohesive zones are not fully developed. 
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Figure 15. Crack trajectories in the simulations with different offsets of initial cracks. Nodes 
along the newly-created cracks are indicative of the new crack element ends. 
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Figure 16. The loading configuration of a rectangular specimen with two edge cracks on the 

opposite sides, under displacement controlled elongation. The cracks are initially 
parallel to the loading boundaries, and may be offset from the symmetry line by a 
Offset doffset- 
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Figure 17. Load-elongation curves in the simulations of crack interaction with the offset d0ffset as 
given above. Besides, the cracks a\o = 020 -0.28 initially, and each crack tip was assumed to have 
an initial cohesive zone of size 0.02. The dashed lined indicate the loss of structural stability. 
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Figure 18. Deformed configuration of the specimen with two edge cracks with the offset d0ffset = 
0.1, corresponding to an extension A =0.0038. 
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Figure 19. Deformed configuration of the specimen with two edge cracks with the offset d0ffset ■■ 
0.2, corresponding to an extension A =0.0038. 
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Figure 20 Load-load point displacement variation for mixed-mode crack growth, showing a 
comparison of the predictions of LEFM and the cohesive zone model. 
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Figure 21. Comparison of the crack path predicted by the maximum tangential stress criterion 
and the cohesive zone model. 
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Figure 22. Comparison of the crack path predicted by LEFM and the cohesive zone model; only 
the region near the initial crack is shown. 
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